Vortices of an incompressible flow are identified as connected fluid regions with a positive second invariant of the velocity-gradient tensor \(\Delta u\), \(\Delta u = S + \Omega\), \(S\) is the strain-rate tensor, \(\Omega\) is the vorticity tensor. Formula is as follows,1
\[ \begin{aligned} Q &= \frac{1}{2} ( u^{2}_{i,i} - u_{i,j} u_{j,i} ) \\ &= - \frac{1}{2} u_{i,j} u_{j,i} \\ &= \frac{1}{2} ( \Vert \Omega \Vert^{2} - \Vert S \Vert^{2} ) \\ \end{aligned} \]
Tecplot
使用的MCR
文件X,Y,Z
方向的速度在Data Set Info
中的序号。Fluent
使用自定义场函数使用custom field function
,按照Q判据定义,计算出新的变量作为Q-Criterion
。使用的计算式如下,
Q-Criterion = 0.5 * ( {Vorticity Magnitude}^2 - {Strain Rate}^2 )
Vorticity Magnitude
位于Velocity
分类下,Strain Rate
位于Derivative
分类下。2Kolář V. Brief notes on vortex identification[C]//Proceedings of the 8th WSEAS International Conference on Fluid Mechanics and 8th WSEAS International Conf. on Heat and Mass Transfer. Stevens Port, WI: World Scientific and Engineering Academy and Society (WSEAS), 2011: 23-28.↩︎
涡量与应变率的定义式见Vorticity_and_StrainRate.pdf↩︎